

导学案

学练考

主編 肖德好

细分课时

分层设计

落实基础

突出重点

选择性必修第三册 RJ

高中物理

天津出版传媒集团

Contents

01	第-	一章 分子动理论 「ONE	
	1	分子动理论的基本内容	导 097
	2	实验:用油膜法估测油酸分子的大小	导 100
	3	分子运动速率分布规律	导 103
	4	分子动能和分子势能	导 106
02	第二 PART	二章 气体、固体和液体 r two	
	1	温度和温标	导 109
	2	气体的等温变化	导 111
		第 1 课时 实验:探究气体等温变化的规律 玻意耳定律	导 111
		第2课时 玻意耳定律的应用	导 114
	3	气体的等压变化和等容变化	导 117
	习:	题课: 气体实验定律和理想气体状态方程的应用	导 120
	4	固体	导 124
	5	液体	导 127
03		三章 热力学定律 「THREE	
	1		导 130
	2	热力学第一定律	导 132

	3	能量守恒定律	导 132
	*	专题课:相互关联的两部分气体问题	导 136
	4	热力学第二定律	导 139
04		四章 原子结构和波粒二象性 T FOUR	
	1	普朗克黑体辐射理论	导 143
	2	光电效应	导 145
	3	原子的核式结构模型	导 150
	4	氢原子光谱和玻尔的原子模型	导 153
	5	粒子的波动性和量子力学的建立	导 157
05	第:	五章 原子核 T FIVE	
	1	原子核的组成	导 159
	2	放射性元素的衰变	导 161
	3	核力与结合能	导 164
	4	核裂变与核聚变	导 167
	5	"基本"粒子	导 167
◆ 参	考智	·····································	导 171

第一章 分子动理论

1 分子动理论的基本内容

学习任务一 物体是由大量分子组成的

א דו מו	
[教材链接]阅读教材"物体是由大量分子组成的"相关内容,完成下列填空: (1)物体是由大量组成的,在研究物体的 热运动性质和规律时,不必区分它们在化学变化中 所起的不同作用,而把组成物体的微粒统称为	A. $m=\frac{M}{N_{\rm A}}$ B. $m=\frac{N_{\rm A}}{M}$ C. $V_{\rm 0}=\frac{\rho N_{\rm A}}{M}$ D. $V_{\rm 0}=\frac{M}{\rho N_{\rm A}}$ [反思感悟]
(2)1 mol 的任何物质都含有	【要点总结】 1. 阿伏加德罗常数 $N_{\rm A}$ (桥梁和纽带作用) 阿伏加德罗常数是宏观世界和微观世界之间的一座桥梁. 如下图. $\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
倒 1 $($ 不定项 $)$ $[$ 2024 \cdot 余姚中学月考 $]$ 已知水的摩尔质量为 M ,密度为 ρ ,阿伏加德罗常数为 N_{Λ} ;若用 m 表示一个水分子的质量,用 V_{\circ} 表示一个水分子的体积,则下列表达式中正确的是 \qquad 学习任务二	2. 微观量与宏观量的关系 $(1)分子质量: m_0 = \frac{M_{\text{mol}}}{N_{\text{A}}} = \frac{\rho V_{\text{mol}}}{N_{\text{A}}}.$ $(2)分子体积: V_0 = \frac{V_{\text{mol}}}{N_{\text{A}}} = \frac{M_{\text{mol}}}{\rho N_{\text{A}}} \text{(适用于固体和液体)}.$ $(对于气体, V_0 表示每个气体分子所占空间的体积)$ $(3)物质所含的分子数: N = nN_{\text{A}} = \frac{m}{M_{\text{mol}}} N_{\text{A}} = \frac{V}{V_{\text{mol}}} N_{\text{A}}.$ 扩散现象
[教材链接]阅读教材"分子热运动"相关内容,完成下列填空: 不同的物质能够彼此	(加2 (不定项)[2024·诸暨中学月考]关于扩散现象,下列说法正确的是 () A. 扩散现象是指相互接触的物体彼此进入对方的现象 B. 扩散现象只能在液体中进行 C. 扩散现象说明分子在做永不停息的无规则运动且分子之间是有空隙的 D. 扩散的快慢与温度无关 [反思感悟]

【要点总结】

对扩散现象的理解:

- (1) 意义:直接证明组成物体的分子在不停地运动.
- (2)影响因素,
- ①物态:气态物质的扩散最快,现象最显著;固态物质的

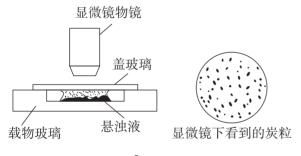
扩散最慢,短时间内现象非常不明显;液态物质的扩散现象明显程度介于气态与固态之间.

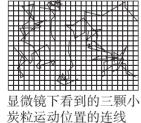
②温度:在两种物质一定的前提下,扩散现象发生的显著程度与物质的温度有关,温度越高,扩散现象越显著。

学习任务三

[教材链接]阅读教材"分子热运动"相关内容,完成

171公工:					
(1)布朗运动:悬浮在液体或气体中的					
不停地做	运动,称为布朗运动,如悬浮在				
水中的小炭粒、花粉颗粒的运动.					


(2)热运动


下加插穴

①定义:_____永不停息的无规则运动叫作热运动.

②影响因素:_______是分子热运动剧烈程度的标志.

倒3 [2024·杭州二中月考] 如图所示,是观察布朗运动的实验装置的示意图.用高倍显微镜观察悬浮在液体中的小炭粒的运动情况.选三个小炭粒,每隔30 s记录一次它们的位置,然后用线段把这些位置按时间顺序连接起来得到它们的位置连线图.下列说法正确的是

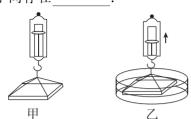
- A. 该实验用显微镜观察到的是液体分子的无规则 运动
- B. 该实验用显微镜观察到的是小炭粒分子的无规则运动
- C. 这样得到的位置连线图就是该小炭粒实际的运动轨迹
- D. 小炭粒越小,液体的温度越高,观察到的布朗运动就越明显

布朗运动

倒 4 (不定项)[2024·嘉兴一中月考]关于布朗运动和扩散现象,下列说法中正确的是 ()

- A. 布朗运动和扩散现象都能在气体、液体、固体中 发生
- B. 布朗运动和扩散现象都是分子的运动
- C. 布朗运动和扩散现象都是温度越高则越明显
- D. 布朗运动和扩散现象都是永不停息的

[反思感悟]


【要点总结】

- 1. 颗粒越小,布朗运动越明显;温度越高,布朗运动越明显.
- 2. 教材图 1.1-4 所示的微粒运动的位置连线不是固体微粒运动的轨迹.
- 3. 布朗运动、扩散现象和分子热运动的异同

		布朗运动	扩散现象	分子热运动
	对象	固体微小颗粒	分子	分子
	产生条件	固体微粒悬 浮在液体或 气体中	两种不同物质相互接触	不需要条件,一 切物质的分子都 在永不停息地做 无规则运动
不同点	影响	温度的高低和 微 粒 的大小	温度的高低、物态形式、物质的浓度差	温度的高低
	现象 本质	是液体或气 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人	是分子的运动	是分子的运动
	观察 方式	光学显微镜	有的裸眼可见	电子显微镜或扫 描隧道显微镜
	相同点	①无规则;②	②永不停息;(3温度越高则越

学习任务四 分子间的作用力

[科学探究] 把一块洗干净的玻璃板吊在弹簧测力计的下端(图甲),手持弹簧测力计上端,让玻璃板恰好与水槽内水面接触(图乙),并慢慢向上提起弹簧测力计.向上提起时弹簧测力计的示数变大,这主要是因为分子间存在

倒 5 (不定项)如图所示,甲分子固定在坐标原点 O, 乙分子位于 x 轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0 为斥力,F<0 为引力,a 、b 、c 、d 为 x 轴上四个特定的位置.现把乙分子从 a 处由静止释放,则

- A. 乙分子从 a 到 b 做加速运动, 由 b 到 c 做减速运动
- B. 乙分子由 a 到 c 做加速运动,到达 c 时速度最大
- C. 乙分子由 a 到 b 的过程中,两分子间的作用力一 直做正功
- D. 乙分子由 *b* 到 *d* 的过程中,两分子间的作用力先做正功后做负功

[反思感悟]		

【要点总结】

分子力与分子间距离变化的关系

F-r 关系图像	分子间距离	分子力
	$r = r_0$	零
$\uparrow F$	r <r<sub>0</r<sub>	表现为斥力,分子力随分子间距的增大而减小
	$r>r_0$	表现为引力,分子力随分 子间距的增大先增大后 减小

学习任务五 分子

[教材链接]阅读教材"分子动理论"相关内容,完成下列填空:

分子动理论的基本内容:(1)) 物体是由
组成的;(2)分子在做	的无规则运动;
(3)分子之间存在差	

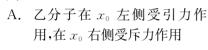
倒 6 分子动理论较好地解释了物质的宏观热力学性质,据此可判断下列说法中错误的是 ()

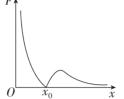
A. 显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分子运动的无规则性

分子动理论

- B. 随着分子间距离的增大,分子间的相互作用力一 定先减小后增大
- C. 布朗运动的无规则性反映了液体分子运动的无规则性
- D. 在真空、高温条件下,可以利用分子扩散向半导体材料中掺入其他元素

L反思感悟」	


▮随堂巩固 ▮


- **1**. (阿伏加德罗常数)[2024 · 山东济南一中月考]某气体的摩尔质量是M,标准状态下的摩尔体积为V,阿伏加德罗常数为 N_A ,下列叙述中正确的是
- A. 该气体在标准状态下的密度为 $\frac{MN_{\rm A}}{V}$
- B. 该气体每个分子的质量为 $\frac{M}{N_A}$
- C. 每个气体分子在标准状态下的体积为 $\frac{V}{N_A}$

- D. 该气体单位体积内的分子数为 $\frac{V}{N_A}$
- 2. (扩散现象)[2024·绍兴期末]我们在实验室用酒精进行实验时,整个实验室很快就闻到了刺鼻的酒精气味,这是一种扩散现象. 以下有关分析错误的是
- A. 扩散现象只发生在气体、液体之间
- B. 扩散现象说明分子在不停息地运动
- C. 温度越高时扩散现象越剧烈
- D. 扩散现象说明分子间存在着间隙

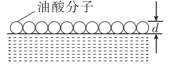
- **3.** (布朗运动)关于布朗运动及其原因,以下说法 不正确的是 ()
- A. 布朗运动是悬浮在液体中的固体微粒的无规则运动,间接证实了液体分子的无规则运动
- B. 布朗运动是液体分子的运动,它说明分子在做 永不停息的无规则运动
- C. 布朗运动是由液体分子对悬浮颗粒碰撞作用 不平衡引起的
- D. 液体的温度越高,布朗运动越剧烈
- **4.** (分子间的作用力)如图所示,设有甲分子位于图中的坐标原点 O 处不动,乙分子可位于 x 轴上不同位置处,图中纵坐标表示 F
 ightharpoonup

这两个分子间分子力的大小,则 ()

- B. 乙分子在 x_0 左侧的受力一定大于在 x_0 右侧的 受力
- C. 乙分子在 x_0 处加速度为 0,速度也为 0
- D. 若乙分子在 x₀ 右侧由静止释放,向左运动的过程中速度先增大后减小到 0
- 5. (分子动理论)(不定项)下列说法正确的是 ()
- A. 分子在做永不停息的无规则运动
- B. 分子动理论是在一定实验基础上提出的
- C. 已知某种气体的密度为 ρ ,摩尔质量为M,阿伏加德罗常数为 $N_{\rm A}$,则单位体积的分子数为 $\frac{\rho N_{\rm A}}{M}$
- D. 水结为冰时,部分水分子已经停止了热运动

2 实验:用油膜法估测油酸分子的大小

一、实验思路


【实验目的】

- 1. 估测油酸分子的大小.
- **2**. 学会间接测量油酸分子大小的思想和方法:通过测量宏观量来测量微观量的方法.

【实验原理】

1. 理想化:认为在水面上形成的油酸薄膜是由油酸分子组成 油酸分子 |

的,如图所示.

2. 模型化:把油酸分子

简化为_____.

3. 估算:为了使油酸充分展开,获得一块单分子油膜,我们需要将油酸在酒精中稀释后再滴入水中.这样的油酸酒精溶液滴在水面上,溶液中的酒精将溶于水并很快挥发,从而获得纯油酸形成的油膜.这里可以粗略地认为,油膜的厚度等于1滴油酸酒精溶液中纯油酸的体积V与它在水面上摊开的面积S之比,即 d=_____.

二、物理量的测量

【实验器材】

油酸、酒精、注射器或滴管、____、浅盘、___、坐标纸、记号笔、爽身粉.

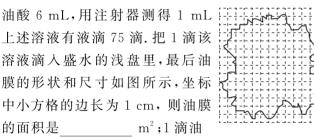
【实验步骤】

- 1. 取 1 mL 的油酸溶于酒精中,制成 500 mL 的油酸酒精溶液.
- **2.** 用注射器向量筒中滴入 1 mL 配制好的油酸酒精溶液(浓度已知),记下滴入的滴数 n,算出一滴油酸

酒精溶液的体积 $V_0 = \frac{1}{n}$ mL.

- 3. 在浅盘中倒入约 2 cm 深的水,将爽身粉均匀撒在水面上.
- 4. 将一滴油酸酒精溶液滴在浅盘的水面上.
- **5**. 待油膜形状稳定后,将带有坐标方格的玻璃板放 在浅盘上,在玻璃板上描下薄膜的形状.
- **6.** 根据画有油膜轮廓的玻璃板上的坐标方格,计算轮廓范围内的正方形的个数,不足半个的舍去,多于半个的算一个. 用正方形的个数乘单个正方形的面积就得到油膜的面积 *S*.
- **7**. 根据已配制好的油酸酒精溶液的浓度,算出一滴溶液中纯油酸的体积V.

三、数据分析


【数据处理】

实验次数	1 mL油 酸酒精 溶液的 滴数	轮内正形数 数	轮廓 面积 <i>S</i>	一滴溶液中 纯油酸的 体积 V	分子 的直 径(m)	平均值
1						
2						

- **倒 1**「2024・学军中学月考〕"用油膜法估测油酸 分子的大小"实验的简要步骤如下:
- A. 根据画有油膜轮廓的玻璃板上的坐标方格,数出 轮廓内的方格数(不足半个的舍去,多于半个的算一 个),再根据方格的面积求出油膜的面积S.
- B. 将一滴油酸酒精溶液滴在水面上,立即将带有坐 标方格的玻璃板放在浅盘上,用彩笔将薄膜的形状 描画在玻璃板上.
- C. 用浅盘装入约 2 cm 深的水.
- D. 用公式 $d = \frac{V}{S}$, 求出薄膜厚度,即油酸分子的 首径,
- E. 用注射器将事先配制好的油酸酒精溶液一滴一 滴地滴入量筒,记下一定体积的溶液对应的总滴数. 根据油酸酒精溶液的浓度,算出一滴溶液中纯油酸 的体积 V.
- (1)上述步骤中有两个步骤有遗漏或不完整的,请指 出并改正:

1	
2	

- (2)上述实验步骤的合理顺序是
- (3)若油酸酒精溶液的浓度为每 10⁴ mL 溶液中有纯 油酸 6 mL,用注射器测得 1 mL 上述溶液有液滴 75 滴. 把 1 滴该 溶液滴入盛水的浅盘里,最后油 膜的形状和尺寸如图所示,坐标 中小方格的边长为1 cm,则油膜

- 酸酒精溶液中含有纯油酸的体积是 m³;根 据以上数据,估测出油酸分子的直径是
- (4)某同学实验中最终得到的计算结果和大多数同 学的比较,数据偏大,对出现这种结果的原因,下列 说法中可能正确的是
- A. 错误地将油酸酒精溶液的体积直接作为油酸的 体积进行计算
- B. 计算油膜面积时,错将不完整的方格作为完整方 格处理
- C. 计算油膜面积时,只数了完整的方格数
- D. 水面上爽身粉撒得较多,油膜没有充分展开

「反思感悟」

【误差分析】

- 1. 油酸酒精溶液的实际浓度与理论值之间存在
- 2. 形成单分子油膜:只有形成单分子油膜,才能保 证分子的直径计算式 $d = \frac{V}{S}$ 成立. 要求使用的油酸 酒精溶液的浓度、爽身粉的用量适宜.
- 3. 油酸的体积 V:用累积法测出油酸的体积. 先测 出 1 mL 油酸酒精溶液的滴数,从而计算出一滴油酸 酒精溶液的体积,再由油酸酒精溶液的浓度算出纯 油酸的体积.
- 4. 油膜的面积 S:根据画有油膜轮廓的玻璃板上的 坐标方格计算出形状不规则的油膜的面积.数出轮 廓内的方格数,方格边长的单位越小,用这种方法求 出的面积越精确.

|素养提升|

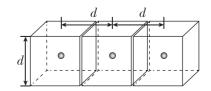
分子的两种模型

1. 球体模型

对于固体和液体分子,可把分子看作一个个挨着排列 在一起的小球,如图所示,分子间的空隙忽略不计.由

一个分子的体积 $V_0 = \frac{V}{N_0}$ 及 $V_0 = \frac{1}{6} \pi d^3$ 可得 d =

$$\sqrt[6V]{\frac{6V}{\pi N_A}}$$
. (V 为摩尔体积)



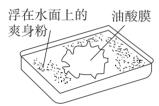
2. 立方体模型

对于气体,由于分子间距离较大,可以把气体分成

一个个小立方体(如图所示),把气体分子看成质点, 位于小立方体的中心,每个小立方体的体积 V_0 为 每个分子平均占有的空间体积,小立方体的边长 d 相当于分子间的平均距离,由 $V_0 = \frac{V}{N}$ 及 $V_0 = d^3$

可得
$$d = \sqrt[3]{\frac{V}{N_{\Lambda}}}$$
.

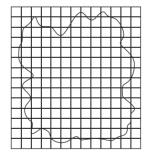
兩個 已知水的摩尔质量为 $M=1.8 \times 10^{-2} \text{ kg} \cdot \text{mol}^{-1}$,水的密度 $\rho=1.0 \times 10^3 \text{ kg/m}^3$,阿伏加德罗常数 $N_{\text{A}}=6.02 \times 10^{23} \text{ mol}^{-1}$,则:


- (1)水的摩尔体积 V_{mol} = $m^3 \cdot mol^{-1}$.
- (2)水分子的质量 $m_0 = \frac{\text{kg,水分子的}}{\text{m}^3. (均保留一位有效数字)}$
- (3)将水分子看作球体,其直径 $d = _____ m(R)$ 留一位有效数字),一般分子直径的数量级是_____m.

变式 $[2024 \cdot 6$ 州中学月考] 若用 M 表示某物质的摩尔质量,m 表示分子质量, ρ 表示物质的密度,V 表示摩尔体积,V'表示分子体积, N_A 为阿伏加德罗常数,则下列关系中正确的是

- A. 分子间距离 $d = \sqrt[3]{\frac{6V'}{\pi}}$
- B. 单位体积内分子的个数为 $\frac{\rho N_{\rm A}}{M}$
- C. 分子的体积一定是 $\frac{M}{\rho N_{\rm A}}$
- D. 物质的密度一定是 $\rho = \frac{m}{V'}$

▮随堂巩固 ▮


1. (用油膜法估测油酸分子的大小)(不定项)如图 在"用油膜法估测分子的大小"实验中,下列说法正 确的是 ()

- A. 实验中把适量爽身粉均匀洒在水面上即可,不能 太多
- B. 酒精溶液的作用是使油酸和爽身粉之间形成清晰的边界轮廓
- C. 实验中的理想化假设是油膜为单层分子且分子 是一个挨一个排列的
- D. 实验中油酸分子的直径等于纯油酸的体积除以 相应油酸膜的面积
- 2. (实验原理)在"用油膜法估测油酸分子的大小" 实验中,首先需将纯油酸稀释成一定浓度的油酸酒 精溶液,稀释的目的是

- 3. (实验综合)[2024·学军中学月考]"油膜法估测油酸分子的大小"的实验方法及步骤如下:
- ①向体积 $V_{\rm in}=1$ mL 的油酸中加酒精,直至总量达到 $V_{\rm in}=500$ mL;

- ②用注射器吸取①中配制好的油酸酒精溶液,把它一滴一滴地滴入小量筒中,当滴入 n=100 滴时,测得其体积恰好是 $V_0=1$ mL;
- ③先往边长为 30~40 cm 的浅盘里倒入 2 cm 深的水,然后将爽身粉均匀地撒在水面上;
- ④用注射器往水面上滴一滴油酸酒精溶液,待油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描下油酸膜的轮廓;
- ⑤将画有油酸膜轮廓的玻璃板放在坐标纸上,如图 所示,数出轮廓范围内小方格的个数 N,小方格的边长 a=20 mm.

根据以上信息,回答下列问题:

- (1)小方格的个数 N 为 个.
- (2)油酸分子的直径 d 约为_____m(结果保留一位有效数字).
- (3)某同学在用油膜法估测油酸分子直径实验中,计算结果明显偏大,可能是由于 .
- A. 爽身粉太薄使油酸边界不清,导致油膜面积测量 值偏大
- B. 爽身粉太厚导致油酸未完全散开
- C. 计算油膜面积时,舍去了所有不足一格的方格
- D. 计算每滴体积时,1 mL 的溶液滴数多数了几滴

3 分子运动速率分布规律

学习任务一 气体分子运动的特点

[教材链接] 阅读教材"气体分子	产运动的特点"相关
内容,完成下列填空:	
(1)随机性与统计规律	
①必然事件:在一定条件下	出现的事件.
②不可能事件:在一定条件下	出现的事件.
③随机事件:在一定条件下_	出现,也
不出现的事件.	
④统计规律:大量	_的整体表现出的
规律.	
(2)气体分子的运动特点	
①气体分子间距离,可	以把气体分子视为
,分子间的相互作用力	力,通
常认为,气体分子除了相互碰撞或	戈者跟器壁碰撞外 ,
不受力而做匀速直线运动,气体	充满它能达到的整

③大量分子的热运动在	宏观上表现出一定的统计规
律,在某一时刻,向着任	任何一个方向运动的分子都
有,而且向	运动的气体分子数目几乎

倒1(不定项)下列关于气体分子运动的说法正确的是 ()

- A. 分子除相互碰撞或跟容器壁碰撞外,可在空间自由移动
- B. 分子的频繁碰撞致使它做杂乱无章的热运动
- C. 分子沿各个方向运动的机会相等
- D. 某时刻某一气体分子向左运动,则下一时刻它一 定向右运动

[反思感悟]			

【要点总结】

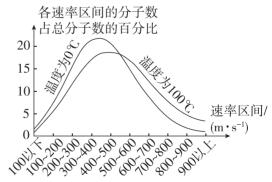
气体的热现象的研究对象是大量的、具有统计学意义的气体分子,而不是个别的气体分子.

学习任务二 分子运动速率分布图像

. 频繁的碰撞使每个

[物理观念] 尽管大量气体分子做无规则运动,速率有大有小,但分子的速率却是按一定的规律分布.下表是氧气分子在 0 $^{\circ}$ 和 100 $^{\circ}$ 两种不同情况下的速率分布情况.

分子速度的大小和方向频繁地发生改变,造成气体

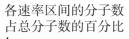

个空间.

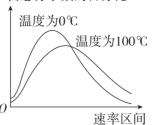
②分子间的碰撞

分子做杂乱无章的热运动.

速率区间/	各速率区间的分子数占总分子数的百分比(%)		
(m • s ⁻¹)	0 °C	100 ℃	
100 以下	1.4	0.7	
100~200	8.1	5.4	
200~300	17.0	11.9	
300~400	21.4	17.4	
400~500	20.4	18.6	
500~600	15.1	16.7	
600~700	9.2	12.9	
700~800	4.5	7.9	
800~900	2.0	4.6	
900 以上	0.9	3.9	
百分比总和	100	100	

若以横坐标表示分子速率区间,纵坐标表示各速率 区间的分子数占总分子数的百分比,作出分子运动 速率分布图像如图所示.




该有以下几个特点:

- (1)0 ℃和 100 ℃氧气分子的速率都呈"中间多、两头少"的分布.
- (2)0 ℃时,速率在 300~400 m/s 的分子最多; 100 ℃时,速率在 400~500 m/s 的分子最多.
- (3)100 ℃的氧气,速率大的分子比例较多,其分子的平均速率比 0 ℃的大.
- (4)纵坐标表示各速率区间的分子数占总分子数的百分比总和为100%.

倒2 (不定项)[2024·绍兴一中月考]根据分子动理论,气体分子运动的剧烈程度与温度有关,氧气分子在 0 ℃和 100 ℃温度下分子运动速率分布图像如图,下列说法正确的是

- A. 不论温度有多高,速率很大和很小的分子 总是多数分子
- B. 温度升高时,速率大的 分子数增多
- C. 温度升高时,每一个分 子的速率都会增大

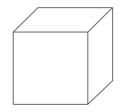
D. 温度变化时,"中间多、两头少"的分子分布规律 不会发生改变

【要点总结】

- 1. 气体分子速率分布规律是大量气体分子遵从的统计规律,单个分子的运动具有不确定性.
- 2. 气体分子速率分布规律
- (1)在一定温度下,所有气体分子的速率都呈"中间多、两头少"的分布.
- (2)温度越高,速率大的分子所占比例越大.
- (3)温度升高,气体分子的平均速率变大,但具体到某一个气体分子,速率可能变大、可能变小也可能不变,无法确定.

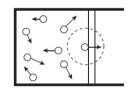
学习任务三 气体压强的微观解释

[教材链接] 阅读教材"气体压强的微观解释"相关内容,完成下列填空:


决定气体压强大小的因素

(1) 从微观角度来看,气体压强的大小跟

(1) 外 愀 观 用 及 米 有,气 1	平压强的人小战
和	
有关.	


强越大;温度不变,体积越_____,气体的压强越大.

倒3 关于气体压强,可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.如图所示,正方体密闭容器中有大量的气体分子,每个气体分子质量为m,单位体积内气体分子数量n为恒量.为简化问题,我们假定:气体分子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前、后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,推导容器内气体压强p与m、n 和v 的关系.(注意:解题过程中需要用到、但题目中没有给出的物理量,要在解题时作出必要的说明)

变式 1 从分子动理论的观点来看,气体分子间距离比较大,分子间的作用力很弱,气体对容器的压强源于气体分子的热运动.当它们飞到器壁时,就会跟器壁发生碰撞(可视为弹性碰撞),对器壁产生作用力从而产生压强,如图所示.设气体分子的质量为 m,气体分子热运动的平均速率为 v.下列说法正确的

A. 气体分子除了相互碰撞或 者跟器壁碰撞外,可视为匀 速直线运动

- B. 在某一时刻,向各个方向运动的气体分子数目差距很大
- C. 每个气体分子跟器壁发生碰撞过程中,施加给器 壁的冲量大小为 2mv
- D. 若增大气体体积,则气体压强一定减小

「反思感悟」

倒 4 某同学记录 2021 年 11 月 19 日教室内温度如下:

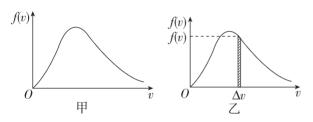
时刻	8:00	10:00	12:00	14:00	16:00
温度	7 ℃	11 °C	12 °C	17 ℃	16 ℃

教室内气压可认为不变,则当天 16:00 与 10:00 相比,下列说法正确的是 ()

- A. 教室内空气密度增加
- B. 教室内空气分子平均动能增加
- C. 墙壁单位面积受到气体压力增大
- D. 单位时间碰撞墙壁单位面积的气体分子数增加 「反思感悟」

【要点总结】

- 1. 温度一定时,气体分子的数密度(即单位体积内气体分子的数目)越大,在单位时间内与单位面积器壁碰撞的分子数就越多,气体的压强就越大.
- 2. 体积一定时,气体的温度越高,气体分子与器壁碰撞 (可视为弹性碰撞)时给器壁的冲量就越大;从另一方面

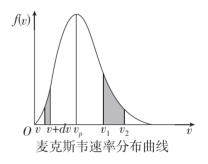

讲,分子的平均速率越大,在单位时间内单位面积器壁受 气体分子撞击的次数就越多,作用力就越大,气体的压强 就越大.

3. 大气压是由重力产生的,大气压随高度增大而减小; 气体的压强是由大量分子无规则热运动向各个方向撞击 而产生的,气体的压强不随高度变化而变化.

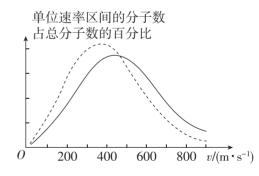
|素养提升|

麦克斯韦理想气体分子速率分布

麦克斯韦在 1859 年用概率论证明了在平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速率分布律,并给出了它的分布函数表达式. 若以横坐标v表示分子速率,纵坐标表示速率v附近单位速率区间内的分子数占总分子数的百分比,函数表达式为 $f(v) = \frac{\Delta N}{N\Delta v}$,其中N为总分子数, ΔN 为各速率区间的分子数. 图像如图甲所示. 如图乙所示,通过微元法解释图像与横轴所围的面积的物理意义, $\Delta S = f(v)\Delta v = \frac{\Delta N}{N}$,所以,得出整个图像与横轴所围的面积的数值为 1.

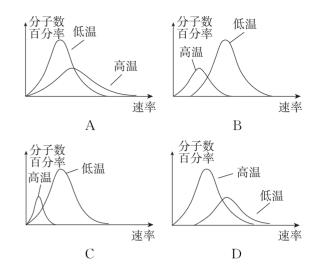


示例 (不定项)[2024・金华一中月考]速率分布曲线表明速率很小和很大的分子数占总分子数的百分率都较小,而具有中等速率的分子数占总分子数的百分率较高,当 $v=v_p$ 时,f(v)取极大值, v_p 称为最概然速率,也称最可几速率,其物理意义是,如果把整个速率范围分成许多相等的小区间,则分布在 v_p 所在小区间的分子数占总分子数的百分比最大.下列说法正确的是


- A. 如图所示因这些是概率分布,所以麦克斯韦速率分布曲线与v轴围成的面积为1
- B. 在有限速率区间 $v_1 \sim v_2$ 内曲线下的阴影面积

的物理意义是,速率分布在 $v_1 \sim v_2$ 的分子数 占总分子数的百分比,或一个分子的速率在 $v_1 \sim v_2$ 内的概率

- C. 任何温度下气体分子速率分布图像都一样
- D. 曲线反映某温度时氧气分子速率呈"中间多,两头少"的分布


变式2 (不定项)[2024·杭州二中月考] 氧气分子在0℃和100℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示.下列说法正确的是

- A. 图中两条曲线下面积相等
- B. 图中虚线对应氧气分子平均速率较小的情形
- C. 图中实线对应氧气分子在 100 ℃时的情形
- D. 图中曲线给出了任意速率区间的氧气分子 数目

▮随堂巩固 ▮

- **1**. (气体分子运动的特点)(不定项)关于气体分子运动的特点,下列说法中正确的是 ()
- A. 由于气体分子间的距离较大,所以气体很容易被 压缩
- B. 气体之所以能充满整个空间,是因为气体分子 间的作用力十分微弱,气体分子除了相互碰 撞或跟器壁碰撞外,不受力而做匀速直线 运动
- C. 由于气体分子间的距离较大,所以气体分子间根本不存在相互作用
- D. 向各个方向运动的气体分子数目几乎相等
- 2. (气体压强的产生)密闭容器中气体的压强 ()
- A. 是由于气体的重力而产生的
- B. 是由于分子间的相互作用力而产生的
- C. 是由于大量气体分子频繁碰撞器壁而产生的
- D. 在失重的情况下等于零
- **3**. (分子运动速率分布规律)下列选项中,能正确描述某种气体分子速率分布规律的是 ()

- **4.** (气体压强的微观解释)(不定项)一定质量的气体,在体积不变的情况下,温度升高,压强增大的原因是
- A. 温度升高后,气体分子的平均速率变大
- B. 温度升高后,气体分子的平均速率变小
- C. 温度升高后,单个分子撞击器壁的平均作用力增大
- D. 温度升高后,单位体积内的分子数增多,撞击到单位面积器壁上的分子数增多了

4 分子动能和分子势能

学习任务一 分子动能

[教材链接]阅读教材"分子动能"相关内容,完成下列填空:

- (1)分子动能:_____的动能叫作分子动能.
- (2)分子平均动能:所有分子的动能的______叫作分子热运动的平均动能.
- (3)温度的微观意义:温度是分子热运动的____的标志.

[物理观念] (1)物体加速运动时,分子的平均动能 _____(选填"会"或"不会")增大,原因是:分子的 平均动能由 决定,与

无关.

(2) 物体温度升高时,物体内每个分子的动能 _____(选填"一定"或"不一定")都增加,因为, 温度是_____无规则热运动的集体表现,对 于个别分子,温度是没有意义的.

- **倒1** 关于温度与分子动能的关系,下列说法正确的是 ()
- A. 某物体的温度为 0 ℃,说明物体中分子的平均动能为零
- B. 温度是分子热运动平均动能的标志
- C. 温度较高的物体,其分子平均动能较大,则分子的平均速率也较大
- D. 物体的运动速度越大,则物体的温度越高

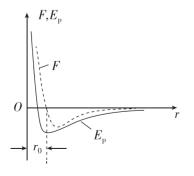
[反思感悟]

【要点总结】

温度与分子平均动能关系的解题技巧

- (1)温度升高,分子的平均动能增大,速率大的分子数增多,速率小的分子数减少,分子的平均速率增大.
- (2)温度只与分子热运动有关,与物体的宏观机械运动无关.

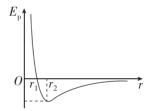
学习任务二 分子势能


[物理观念] 分子势能:分子间存在着相互

______,可以证明分子间的作用力所做的功与 无关,分子组成的系统具有分子势能.

[科学推理] 分子力做功与分子势能变化的关系

分子距离	分子力做功	分子势能变化 (规定无穷远处 分子势能为零)	分子力和分 子势能随分子 间距离变化 的图像
当 r> r ₀ 时	分子间的作用力表现, 若r减小,分子间的作用力做	分子势能随分子间距离的 减 小 而	
	分子间的作用 力 表 现 为; 若 r 减 小,分 子间的作用力 做		E_{p} $O \downarrow r_{0}$ r
当 r= r ₀ 时	分子力等于 0	分 子 势 能	


倒2 分子力 F、分子势能 E_p 与分子间距离 r 的关系图线如图所示(取无穷远处分子势能 E_p =0). 若甲分子固定于坐标原点 O,乙分子从某处(两分子间的距离大于 r_0 而小于 $10r_0$) 由静止释放,在分子力的作用下沿 r 正半轴靠近甲分子. 下列说法错误的是

- A. 在乙分子靠近甲分子的过程中,分子势能先减小 后增大
- B. 在乙分子靠近甲分子的过程中,分子动能逐渐增大
- C. 当乙分子距甲分子为 $r=r_0$ 时,速率最大
- D. 当乙分子距甲分子为 $r=r_0$ 时,系统的分子势能最小

[反思感悟]

要式1(不定项)[2024·湖北荆州期末]如图为以无穷远为零势能点的分子势能随分子间距的变化关系.若一个分子固定于原点 *O*,另一个分子从距 *O* 点很远处(分子势能可视为零),仅在分子间作用力下由静止开始向 *O* 点运动至不能再靠近.在此过程中,下列说法正确的是

- A. 分子间距离为 r_1 时处于平衡状态
- B. 在此过程中,分子的加速度先变大,后变小再变大
- C. 分子间距离为 r_2 时分子势能最大
- D. 分子间距离为 r_1 时动能减为零

「反思感悟」

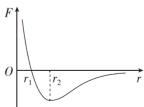
【要点总结】

分子势能图像问题的解题技巧

- $(1)E_{p}$ -r、F-r 关系图像中拐点的意义不同. E_{p} -r 图像的最低点(分子势能最小值)对应的距离是分子平衡距离 r_{0} ,而 F-r 图像的最低点(引力最大值)对应的距离大于 r_{o}
- (2) E_p -r 图像与r 轴交点的横坐标小于 r_o ,F-r 图像与r 轴交点的横坐标等于平衡距离 r_o .
- (3)要把图像上的信息转化为分子间距离,再求解其他问题.

学习任务三 物体的内能

下列填空:
下列填至: 内能的定义:物体中所有 与
的总和叫作物体的内能.
[物理观念] 内能的决定因素
(1)从微观上看:物体的内能由组成物体的
和、分子热运动的和和
三个因素决定.
(2)从宏观上看:物体内能的大小由物体的
、、和三个因素
决定.
倒3 [2024·广东广雅中学月考]对于实际的气
体,下列说法正确的是 ()
A. 气体的内能包括气体分子的重力势能
B. 气体的内能包括气体分子之间相互作用的势能
C. 气体的内能包括气体整体运动的动能
D. 气体的内能只包括气体分子热运动的动能
[反思感悟]


【要点总结】

内能与机械能的区别和联系

LI UC - A AGAM UC EL EL MINI ANCAL			
项目	内能	机械能	
对应的运动形式	微观分子热 运动	宏观物体机械运动	
能量常见形式	分子动能、分子 势能	物体动能、重力势能 和弹性势能	
能量存在原因	由物体内大量 分子的热运动 和分子间相对 位置决定	由于物体做机械运动 或物体形变或被举高 而具有	
影响因素	物质的量、物体 的温度和体积 及物态	物体的机械运动的速 度、相对于零势能面 的高度或弹性形变 程度	
是否为零	永远不能等于零	一定条件下可以等于零	
联系	在一定条件下可以相互转化		

▮ 随堂巩固 ▮

- 1. (分子动能和分子势能)下列说法正确的是 ()
- A. 随着物体运动速度的增大,物体分子动能也增大
- B. 随着物体运动速度的减小,物体分子动能也减小
- C. 在两个相距很远的分子逐渐靠近到很难再靠近 的过程中,分子间作用力越来越大
- D. 分子势能和分子间作用力有可能同时随分子间 的距离增大而增大
- **2**. (物体的内能)关于物体的内能下列说法中正确的是 ()
- A. 物体的内能与物体的温度、体积都有关系
- B. 体积相同的同种气体,它们的内能一定相等
- C. 运动物体的速度增大,则分子动能增大,物体的内能也增大
- D. 温度高的物体一定比温度低的物体内能大

